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nous attendons l'ach~vement d'une 6tude de spectro- 
m&rie infra-rouge entreprise par A. Novak sur ces 3 
formes. 
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Collimation Corrections in Small Angle X-ray Scattering* 
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(Received 25 September 1964 and in revised form 2 February 1965) 

An improved technique is developed for correcting experimental small angle X-ray scattering data for 
the effects of the height of the collimating slits when the weighting function for the intensity distribution 
along the slit height can be approximated by a Gaussian. Although the new correction method is no 
more difficult to use than an earlier technique [Schmidt & Hight, Acta Cryst. 13, 480 (1960)], the cor- 
rected intensity values are considerably more accurate when there is negligible error in the input data. 
The new method also has the advantage of being less sensitive to errors in the input data. 

Introduction 

Experimental measurements of the angular distrib- 
ution of the intensity of small angle X-ray scattering, 
instead of giving the scattering at a single angle, ordin- 
arily represent the average intensity over a range of 
angles around the nominal scattering angle. In order 
to obtain sufficient scattered intensity, this range of 
angles often must be made so large that the scattering 
pattern is appreciably distorted. The experimental scat- 
tering data must then be corrected for this effect. 

Most collimating systems employ slits with a length 
much greater than their width. Since the slit width can 
usually be assumed small enough that it has a neglig- 
ible effect on the scattering pattern, only the effects of 
slit height will be considered here. 

For slits of negligible width, the experimentally 
measured scattering intensity F(h) is related to the 
perfect-collimation scattering I(h) by the equation 
(Guinier, Fournet, Walker & Yudowitch, 1955) 

(1) 

where h is the scattering angle and W(~0) is a weighting 
function which depends on the collimating system. The 
weighting function W(~0) will be assumed to be known 
from calculations or experimental measurements. It 
will be normalized so that 

* Work supported by the National Science Foundation and 
the University of Missouri Research Council. 

In order that the integration in (1) need extend only 
over positive values of ~0, W(~0) is assumed to be an 
even function of tp. With this notation, collimation cor- 
rection consists in finding I(h) from F(h). The form of 
W(~0) determines the mathematical procedures neces- 
sary for this correction. 

Often W(~0) can be approximated by a Gaussian. 
Kratky, Porod & Kahovec (1951) showed that for 
a Gaussian weighting function W(~o)=2pn -~ exp 
(-p2~02), 

_ exp (pZh2) f °~ N'(t)dt I(h) 
Pn ~ _h (t2-h2) ~ (2) 

where N(h)= F(h) exp (-pEh2). The constant p is det- 
ermined by the slit height, with perfect collimation cor- 
responding to the limit of infinite p, and with the 
weighting function for infinite slit height being ob- 
tained by letting p = 0 in the exponential function and 
then assigning some convenient value to the factor by 
which the function is multiplied. Thus, for infinite slit 
height, W(rp) is a constant and no longer satisfies the 
normalization relation. 

To use (2) to find I(h), the experimental data must 
be differentiated numerically. Because of the need to 
perform this differentiation, the relative error in I(h) 
can be greater than the relative error in the experim- 
ental data. 

A number of methods have been proposed for col- 
limation correction. Kratky, Porod & Skala (1960) 
discussed some procedures for collimation correction, 
and Heine & Roppert (1962) and Heine (1963) devel- 
oped techniques for performing collimation corrections 
with an automatic digital computer. Methods for ma- 
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chine computation of collimation corrections for in- 
finite slit height were recently described by Kent & 
Brumberger (1964), and by Chu & Tan Creti (1964). 

By modifying equation (1), Schmidt & Hight (1960) 
obtained an expression giving I(h) directly in terms of 
F(h), instead of N'(h). For several years this technique 
has been used routinely in correcting experimental 
small angle X-ray scattering data. Although this me- 
thod gave satisfactory results in almost all cases, an 
effect was observed which suggested that further study 
of the collimation correction problem was advisable. 
When the scattered intensity did not change by more 
than a factor of the order of two throughout the an- 
gular region for which data were available, the cor- 
rected data points often did not lie on a smooth curve 
but instead would be scattered randomly about an 
average curve. This effect was observed only for these 
relatively slowly changing scattering curves. Prelim- 
inary tests indicated that it was due to small errors in 
the experimental data and suggested the advisability 
of studying the sensitivy of the corrected curve to 
small random errors in the scattering data. Also, the 
availability of automatic digital computers made feas- 
ible a relatively extensive investigation of the errors in- 
troduced by collimation correction methods when there 
is negligible error in the input datm 

This discussion of collimation correction procedures 
thus considers two effects. First, several collimation 
correction methods are studied to determine the error 
introduced by the correction procedure when there is 
essentially no error in the input data. Also, the cor- 
rection methods are tested for their sensitivity to ran- 
dom errors in the experimental data. The results of 
these investigations are used to develop a collimation 
procedure which is an improvement over the method 
of Schmidt & Hight. 

The collimation correction techniques and the res- 
ults of the tests are summarized below. A more detailed 
account is available from the author. 

Numerical methods 

As Schmidt & Hight (1960) pointed out, the principal 
advantage of their modified equation is that it can 
often simplify the calculations. Both the modified equ- 
ation and equation (2) contain the same information 
and in principle should give equivalent results. The 
choice of which equation to use is primarily a matter 
of convenience. For the present series of numerical 
calculations, (2) was chosen as a starting point. 

For numerical evaluation, (2) can be written 

I(h)= - exp (p2h2) ~ t (j+i+')4 dsN'(s) (3) 
P~* i = 0  t)(j-k-i),d I/S 2 -  h 2-- " 

In this expression j is taken to be an integer, with 
h =  iA. In (3), a change of the variable of integration 
gives 

I(h) = 
exp [(pjA) 2] ~_, l J+i+ ' dm d 

- PAn ~ i=0,~j+i ~ 2 _ j 2  dm [N(mA)]. (4) 

In each integral of the sum, N(m/A) will be assumed to 
be approximated by a polynomial such that d/dm x 
[N(m/A)] can be written 

d 
dm [N(mA)] 

5 

= ~v" [ak-2  Jr- (m - j -  i -  l)bk-2 
k=0  

+ (m - j -  i -  1)2cx-z]Nj+i+g_2 (5) 

where Nj = N(jA) and ak-2 ,  be -2 ,  and Ck--2 are constants 
determined by the particular conditions chosen to de- 
fine the polynomial. In certain cases some of these con- 
stants can be zero. Let Fj = F(jA). Then (5) can be used 
to express (4) in the form 

I(jA)= ~ TtjFj+l-2. (6) 
i=0  

In (6) the slit-corrected intensity thus is a sum of terms 
which are the product of the experimental intensity 
values Fj and constants T,j which depend only on the 
collimation system and which are the same for all 
scattering curves measured under the same collimation 
conditions. Equation (6), which is similar to but not 
identical with the final equation of Schmidt & Hight, 
is in a convenient form for numerical computation. 

When linear and quadratic polynomials were used 
to approximate N(mA) in (4), the results were no better 
than those obtained with the method of Schmidt & 
Hight. Therefore, in all other studies N(mA) was ap- 
proximated by a cubic polynomial. Thus d/dm[N(mA)] 
was a quadratic function of m, as in (5). 

For the interval j_< m < j +  1 a cubic polynomial is uni- 
quely determined by requiring the polynomial to equal 
the experimental values of N(mA) at four points where 
the function is known from experimental data. Four 
convenient values for the interval j < m < j +  1 are given 
by Nj-e with k = -  1, 0, 1, and 2. Alternatively, one 
could use the four Nj+k with k = 0, 1, 2, and 3 or with 
k = - 2, - 1, 0, and 1. All three of these cubic polyno- 
mials were tested and gave nearly equivalent results. 
For all three polynomials, the accuracy of collimation 
correction was very satisfactory, but random errors in 
F(h) produced large fluctuations in the corrected 
scattering data. 

In order to reduce these effects of random errors, 
another cubic polynomial approximation for N(mA) in 
the interval j <  m < j +  1 was written in the form 

N (mA) = Aj + (m - j )Bj  + (m -j)2C t + (m -j)3Dj , 

the constants A j, Bj, Cj, and Dj being determined by 
the condition that for each j, the polynomial be a least- 
squares fit to the six values of Nt-k given by k = - 2 ,  
- 1 ,  0, 1, 2, and 3. For a given value of j ,  the least- 
squares fit requires that the quantity 
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1 J ' l  5 ( j + k - 2  2[* 

be a minimum. For the polynomial defined by this con- 
dition, the Tij- in (6) are given by 

r~j= u~_2,j[v~j + v,~ + v,~] (8) 
where 

Uij =(pA)-Xn -÷ exp [(pA)2(2ij +j2)] 

V~j - A  1.~1 5 AsS 1 - - i - 2 a - ~  ~-4.~ 
V~] =A2S~_3,j- t-  5 A4~'2 _t_ s A5K'2 

-i--4"-" " i - 4 , 1 ~  T-2-6 "-' ~ i - 4 , /  

V~ i _ A 3 S  3 _a_ s Ass  3 (9) - -  t-- 3,i T'-ff-g i--4,j 

with S~ = 0 for all k and j when i < O, and for i >_ l, 

S~, = l  i+j dm 

o,+j-, I/m~--j~ 

S ~ =  I i+j dm [ m - i - j + ½ ]  
-~i+j-I  I /mZ-j2  

1 gi--j dm 
S3J= -2 i+j-, ~/-m--~---~ [ ( m - i - j ) 2 - ½ ]  (10) 

and where for the quantity J~ the nth difference Anti 
is defined 

z l n j ~ =  ~" ( - - 1 ) n n !  ~ + k .  

k=0 k ! ( n - k ) !  
(11) 

For scattering curves which are changing relatively 
rapidly, a smaller interval of integration may be neces- 
sary to give corrected data with sufficient accuracy. 
To reduce the number of terms which must be consider- 
ed in making collimation corrections with a reduced 
interval of integration, a smaller interval, which will 
be called A, can be used near the lower limit of (3), 
an interval 2A being employed in the rest of the 
integral. An analogue of (6) has been developed using 
these two intervals of integration. Further information 
about the resulting equation, which will be referred to 
as the 'variable increment equation', is available from 
the author. 

Results 

Six test functions were used to compare and evaluate 
the different collimation correction methods. For the 
test functions, I(h) could be represented by the relation 

I (h )= ln (h ,a )=h  n exp (-a2h2) , 

12(h,a), 14(h,a), Io(h,a), Io(h,O), 1-2(h,0), and I-4(h,0) 
being employed in the tests. Note that Io(h,a) is a 
Guassian, and Io(h,O) = 1. The corresponding F(h) func- 
tions Fn(h,a) computed from (1) can be expressed in 
terms of tabulated functions. A list of the Fn(h,a) and 
tables of their values are available from the author. 

This set of test functions was chosen to provide a 
convenient way of evaluating the collimation correct- 
ion methods under conditions similar to those likely 

to be encountered in experimental small angle X-ray 
scattering studies. 

Tests were made of (6), the variable increment equa- 
tion, and several equations using other approximations 
for N'(s). In all calculations, p was set equal to 
(225/8)n*, in order to simulate the experimental con- 
ditions at the University of Missouri. For A, values of 
0.001, 0.0005, and 0.000125 radian were employed in 
(6), and in the tests of the variable increment equation, 
the increments were 0.0005 and 0.001 radian. In the 
test functions Fz(h,a), F4(h,a), and Fo(h,a), the constant 
a was equal to 286, 440, and 50, respectively, with h 

expressed in radlans. 
The calculations were made with an IBM 1620 Model 

I computer. FORTRAN II-D programs were prepared 
for computing the Tij and for making collimation cor- 
rections with (6) and the variable increment equation. 
At angles less than 20 milliradians, with 100 Tij" values 
used for each angle, the computing time was about 3 
seconds at each angle. 

The results of the tests are summarized in Table 1. 

Table 1. Maximum percentage error obtained for  test 
functions Fn(h, a) expressed to k significant figures, using 

equation (6) and the variable increment 
(v.i.) equation 

Test Equa- Angular  region (milliradians) 
funct ion k tion 3-5 6-9 10-20 

F0 (h,0) 8 6 0"005 0.002 0"004 
F0 (h,a) 4 6 0.02 0"02 0.03 
F0 (h,a) 2 6 2 2 3 
Fo (h,a) 2 v.i. 2 2 - -  
Fz (h,a) 4 6 3 4 - -  
F2 (h,a) 2 6 3 4 - -  
F2 (h,a) 4 v.i. 0"3 1 --  
F2 (h,a) 2 v.i. 4 2 --  
F4 (h,a) 4 6 5 - -  - -  
F4 (h,a) 2 6 4 --  - -  
F4 (h,a) 2 v.i. 2 -- --  
F4 (h,a) 4 v.i. 1 - -  - -  
F-2(h,0) 4 6 4 0"2 0"04 
F-2(h,0) 2 6 4 3 3 
F-2(h,0) 4 v.i. 0" 1 0"06 - -  
F-z(h,0) 2 v.i. 5 1 - -  
F-4(h,0) 4 6 200 0"5 0"3 
F-4(h,0) 2 6 200 2 3 
F-4(h,0) 4 v.i. 0-3 0" 1 - -  
F-a(h,0) 2 v.i. 2 2 - -  

As all collimation correction equations gave essen- 
tially satisfactory results at angles greater than 20 mil- 
liradians, this range of angles will not be discussed. No 
errors are shown for F4(h,a) for 6-9 milliradians because 
in this region the function was decreasing too rapidly 
to give meaningful values of I(h). 

The constant test function Io(h,O)=Fo(h,O) can be 
considered a test of the error inherent in the numerical 
approximation used to evaluate N(mA)  in (4), since for 
a constant test function, F(h) is expressed to the same 
number of significant figures that the computer uses in 
all steps of the computations, and thus there are essen- 
tially no random errors in F(h). Thus, as Table 1 in- 
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dicates, the error in Io(h,O) is much lower than for any 
of the other In(h,a). The low errors are due to the very 
favorable conditions under which the method was test- 
ed, and such high accuracy cannot be expected when 
the input function F(h) has no more than 4 significant 
figures. 

To test the effects of random errors in the input data, 
the test functions were expressed to four, three, and 
two significant figures. Random errors were found to 
cause appreciable scatter of the corrected intensity 
values only for scattering curves which changed rela- 
tively slowly. Apparently this effect is not merely a 
consequence of the scatter being more easily observed 
when the intensity is slowly changing, but is also due 
to the fact that for a slowly changing intensity curve, 
the corrected intensity is a small difference of a number 
of larger terms, while for more rapidly changing scat- 
tering curves, a greater fraction of the corrected in- 
tensity comes from the first few terms of (6) and the 
variable increment equation. 

With most of the polynomial approximations for 
N'(s), and with the method of Schmidt & Hight, scatter 
appeared in the corrected intensity when the input data 
were rounded off to two significant figures. When the 
data were expressed to more significant figures, no 
scatter was observed. As can be seen from Fig. 1, use 
of the least-squares approximation nearly eliminated 
the scatter in the corrected data for A =0.001 radian 
when Fo(h,a) was expressed to 2 significant figures. This 
smoothing effect was also found in other scattering 
curves. 

The tests showed that decreasing the increment A did 
not always increase the accuracy of the corrected scat- 
tering data. For example, in one case when the variable 
increment equation was used with increments of 0.0005 
and 0.001 radian and with the test function expressed 
to two significant figures, much more scatter was ob- 
served in the corrected results than was found from 
(6) with the same input and with A--0.001 radian. 
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Fig. I. Collimation corrections for the Gaussian test function 
pair Io(h,a) and Fo(h,a). The exact values of Io(h,a) are shown 
by the curve, and squares and circles indicate Io(h,a) values 
calculated by (6) and by the method of Schmidt & Hight, 
respectively, with the input function Fo(h,a) expressed to 
two significant figures in both cases. 

Thus, in this situation, decreasing the increment in- 
creased the error. This effect is probably a result of the 
dependence of the corrected curve on the derivative 
of the input data. For a constant absolute error in the 
input data, decreasing the increment increases the un- 
certainty in the derivative. Because of this effect, care 
must be given to the choice of A for a given experimen- 
tal situation. 

As Table 1 indicates, the variable increment equation 
gives a lower error than (6) only in angular regions 
where F(h) either has a maximum, like F2(h,a) and 
F4(h,a) in the region from 3 to 5 milliradians, or when 
F(h) is changing relatively rapidly, like F-4(h,0) at 
angles between 3 and 5 milliradians. In other cases, 
the variable increment equation does not give an ap- 
preciably smaller error in l(h) than is obtained with (6). 
Also, as has been mentioned above, a decrease in the 
increment can increase the probability of random er- 
rors in I(h). For these two reasons, routine use of the 
variable increment equation is not recommended for 
the inner part of the scattering curve. Instead, the tests 
suggest that ordinarily (6) should be used for rout- 
ine collimation corrections, the variable increment 
equation being applied in the inner part of the scat- 
tering curve only when the experimental intensity in 
this angular region either has maxima or minima or 
is changing relatively rapidly. In doubtful cases the 
experimental values of F(h) can be corrected by both 
equations, and the choice of which equation is best can 
be made after comparison of values of I(h) obtained 
by the two equations. 

The test functions Fn(h,a) were also used as input 
data for the collimation correction technique of Schmidt 
& Hight, in order to compare the results of this method 
with those from (6) and the variable increment equat- 
ion. With the method of Schmidt & Hight, the cor- 
rected intensity usually was accurate within about 1 7o, 
although for rapidly changing functions the error was 
somewhat greater. Except in this case, however, the 
errors introduced by the method of Schmidt & Hight 
are no larger than would be encountered in experimen- 
tal data, and thus the errors ordinarily are not appreci- 
able. 

Because of the higher accuracy of (6) and the variable 
increment equation and their reduced sensitivity to 
errors in the input data, these equations, once the T~j 
are computed, represent an improved collimation cor- 
rection technique which is no more difficult to use 
than the method of Schmidt & Hight. 

Copies of the IBM 1620 programs for evaluating 
equation (6) and the variable increment equation are 
available from the author. 

The author would like to express his gratitude to the 
staff of the University of Missouri Computer Research 
Center for authorizing the use of the computer and for 
assistance with the numerical calculations, and to Rob- 
ert E. Harris for suggesting the use of the least-squares 
technique and for other helpful discussions. 
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The crystal structure of the organic scintillator POPOP, 2,2-p-phenylenebis-(5-phenyloxazole), has been 
determined and refined by three-dimensional least-squares methods. The final R index for 1370 observ- 
able reflections is 0.058, and the standard deviations in the positions of the C, N, and O atoms are 
about 0-003 A. 

The crystals are monoclinic, space group P21/c, with a =  9.230, b = 5.285, c= 19.322/~ and/~= 92.09°; 
there are two centrosymmetric molecules per unit cell. The three benzene and two oxazole rings are 
each planar, but they are twisted slightly with respect to one another to form a propeller-shaped molec- 
ule. The bond distances indicate appreciable conjugation between the rings and localization of charges 
within the oxazole rings. The intermolecular contacts appear to be normal. 

Introduction 

POPOP, C24H16N202(I), with the structural names:  

(a) 2,2'-p-phenylenebis-(5-phenyloxazole) 

(b) 1,4-bis-2-(5-phenyloxazolyl)benzene 

is a scintillator, capable of emitting a brief  pulse of 
fluorescent light upon interaction with a high-energy 
particle or quan tum (e.g., Bell & Hayes, 1958). 

(I) 

to the crystallographic b axis. The crystals are soft and 
have no pronounced cleavage, and as a result all at- 
tempts to obtain a specimen suitable for mount ing  
about  any axis other than b were unsuccessful. The 
crystal used for collecting intensity data was about 
0.07 x 0-07 m m  in cross section and about  3 m m  in 
length. 

The unit-cell dimensions and other crystal data are 
given in Table 1. Values for a, c, and fl were determined 
from a least-squares treatment based on 34 high-angle 
(sin0 > 0.81) hOl reflections measured on a Straumanis- 
type rotation photograph about  b; the value of b was 
obtained from a weighted average of 270 measurements  
made on precession photographs,  taken with Mo and 
Fe radiation, of  the hk2h zone and calibrated from the 
previous values of a, c, and ft. 

An X-ray diffraction study has been completed of the 
molecular structure of  this strong scintillator. 

Experimental 

Scintillation-grade crystals of  POPOP were obtained 
from Packard Instrument  Company.  They occur as 
long, pale yellow needles, with the needle axis parallel 

* Contribution No. 3212 from the Gates and CreUin Labora- 
tories of Chemistry. This investigation was supported, in part, 
by a grant (G-21608) from the National Science Foundation, 
U.S.A. 

Table 1. Unit cell parameters of POPOP and their 
estimated standard deviations 

(2cu K~ = 1-5418/~) 
a = 9"2300(3) ,~ V = 941 "9(3) ~,3 
b= 5.2850(8) Z = 2  
e = 19.3220(7) t?e = 1"285(1) g.cm-3 
fl= 92"088(2) ° 0o = 1 "306(10) g.cm-3 

In the least-squares treatment of  the hOl data, weights 
on an absolute scale were derived from the distr ibution 
of discrepancies between repeated measurements ;  the 
resulting goodness of fit was 0.8, suggesting that  the 


